On embeddability of cones in euclidean spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embeddability of L1(μ) in dual spaces, geometry of cones and a characterization of c0

In this article we suppose that (Ω,Σ,μ) is a measure space and T an one-to-one, linear, continuous operator of L1(μ) into the dual E ′ of a Banach space E. For any measurable set A consider the image T (L1 (μA)) of the positive cone of the space L1(μA) in E′, where μA is the restriction of the measure μ on A. We provide geometrical conditions on the cones T (L1 (μA)) which yield that the measur...

متن کامل

On Polar Cones and Differentiability in Reflexive Banach Spaces

Let $X$ be a  Banach  space, $Csubset X$  be  a  closed  convex  set  included  in  a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a  bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set  $C$,  so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...

متن کامل

Testing Embeddability Between Metric Spaces

Let L ≥ 1, > 0 be real numbers, (M,d) be a finite metric space and (N, ρ) be a metric space (Rudin 1976). The metric space (M,d) is said to be Lbilipschitz embeddable into (N, ρ) if there is an injective function f :M → N with 1/L · d(x, y) ≤ ρ(f(x), f(y)) ≤ L · d(x, y) for all x, y ∈ N (Farb & Mosher 1999, David & Semmes 2000, Croom 2002). In this paper, we also say that (M,d) is -far from bei...

متن کامل

On quasiplanes in Euclidean spaces

A variational inequality for the images of k-dimensional hyper-planes under quasiconformal maps of the n-dimensional Euclidean space is proved when 1 ≤ k ≤ n − 2 .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 1993

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm-64-1-141-147